• ILikeBoobies@lemmy.ca
    link
    fedilink
    arrow-up
    1
    ·
    4 months ago

    “I may be a staunch atheist,” said Richard Stallman, creator of the GNU + Linux operating system and self-proclaimed architect of the modern world, “but any decent analysis in comparative religion would conclude that the universe is a copyleft creation, thereby pi should automatically fall under the terms of the GNUv3 license.”

    Lol, he would actually say that

  • Semi-Hemi-Lemmygod@lemmy.world
    link
    fedilink
    English
    arrow-up
    2
    arrow-down
    2
    ·
    4 months ago

    If pi is truly infinite, then it contains all the works of Shakespeare, every version of Windows, and this comment I’m typing right now.

    • driving_crooner@lemmy.eco.br
      link
      fedilink
      arrow-up
      4
      ·
      4 months ago

      That’s not how it’s works. Being “infinite” is not enough, the number 1.110100100010000… is “infinite”, without repeating patterns and dosen’t have other digits that 1 or 0.

        • Kogasa@programming.dev
          link
          fedilink
          arrow-up
          0
          ·
          4 months ago

          Still not enough, or at least pi is not known to have this property. You need the number to be “normal” (or a slightly weaker property) which turns out to be hard to prove about most numbers.

            • barsquid@lemmy.world
              link
              fedilink
              arrow-up
              0
              ·
              4 months ago

              “Nearly all real numbers are normal (basically no real numbers are not normal), but we’re only aware of a few. This one literally non-computable one for sure. Maybe sqrt(2).”

              Gotta love it.

              • CanadaPlus@lemmy.sdf.org
                link
                fedilink
                arrow-up
                1
                ·
                edit-2
                4 months ago

                We’re so used to dealing with real numbers it’s easy to forget they’re terrible. These puppies are a particularly egregious example I like to point to - functions that preserve addition but literally black out the entire x-y plane when plotted. On rational numbers all additive functions are automatically linear, of the form mx+n. There’s no nice in-between on the reals, either; it’s the “curve” from hell or a line.

                Hot take, but I really hope physics will turn out to work without them.

      • HatchetHaro@lemmy.blahaj.zone
        link
        fedilink
        arrow-up
        0
        ·
        edit-2
        4 months ago

        to be fair, though, 1 and 0 are just binary representations of values, same as decimal and hexadecimal. within your example, we’d absolutely find the entire works of shakespeare encoded in ascii, unicode, and lcd pixel format with each letter arranged in 3x5 grids.

          • leverage@lemdro.id
            link
            fedilink
            English
            arrow-up
            1
            ·
            4 months ago

            You can encode base 2 as base 10, I don’t think anyone is saying it exists in binary form.

        • CanadaPlus@lemmy.sdf.org
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          4 months ago

          Actually, there’d only be single pixels past digit 225 in the last example, if I understand you correctly.

          If we can choose encoding, we can “cheat” by effectively embedding whatever we want to find in the encoding. The existence of every substring in a one of a set of ordinary encodings might not even be a weaker property than a fixed encoding, though, because infinities can be like that.

      • Fubber Nuckin'@lemmy.world
        link
        fedilink
        arrow-up
        0
        ·
        4 months ago

        If it’s infinite without repeating patterns then it just contain all patterns, no? Eh i guess that’s not how that works, is it? Half of all patterns is still infinity.

          • Ultraviolet@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            4 months ago

            However, as the name implies, this is nothing special about pi. Almost all numbers have this property. If anything, it’s the integers that we should be finding weird, like you mean to tell me that every single digit after the decimal point is a zero? No matter how far you go, just zeroes forever?

    • Naz@sh.itjust.works
      link
      fedilink
      arrow-up
      1
      ·
      4 months ago

      shaves the sphere down with a sculptor’s knife

      There. 3.1416. Not perfectly round but it’ll bake in the oven just fine.

  • livingcoder@programming.dev
    link
    fedilink
    arrow-up
    0
    ·
    edit-2
    4 months ago

    Is there an algorithm or number such that we could basically pirate data from it by saying “start digit 9,031,643,679 with length 5,345,109 is an MP4 of Shrek”? Something that we could calculate in a day or less?

    • AVincentInSpace@pawb.social
      link
      fedilink
      English
      arrow-up
      2
      ·
      4 months ago

      The short answer is no, and even if we could, the digit index you’d start at would have a larger binary representation than the actual data you were trying to encode.

    • nova_ad_vitum@lemmy.ca
      link
      fedilink
      arrow-up
      2
      ·
      4 months ago

      Similarly: if you write a program to randomly run through all the combinations of pixels on a decently large screen (say, 1080p) you will eventually see every important question and answer that can be expressed on a screen.

    • apex32@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      4 months ago

      An example I found: the string of digits 0123456789 occurs at position 17387594880. In this case, it took 11 digits to describe where to find a 10-digit number.

      So I think such an algorithm would technically work, but your “start digit” would be so large it would use more data than just sending the raw file data. Not to mention the impossible amount of computing power needed.