I’m a staff software engineer at Sunrun, the USA’s largest residential solar installer.

I mostly work with kotlin, but also java, python, ruby, javascript, typescript. My hobby is picking up new hobbies. Currently bird photography and camping.

  • 2 Posts
  • 489 Comments
Joined 1 year ago
cake
Cake day: June 6th, 2023

help-circle
  • Anything but the last one. Don’t duplicate the http code in the body, else you’re now maintaining something you don’t need to maintain.

    I’m not a fan of codes that repeat information in the body either, but I think if you had used a different example like “INVALID_BLAH” or something then the message covered what was invalid, then it would be fine. Like someone else said, the error data should be in an object as well, so that you don’t have to use polymorphism to figure out whether it’s an error or not. That also allows partially complete responses, e.g. data returns, along with an error.




  • Rewriting projects from scratch by definition represent big step backwards because you’re wasting resources to deliver barely working projects that have a fraction of the features that the legacy production code already delivered and reached a stable state.

    Joel’s point was about commercial products not programming languages. I’m not the one misunderstanding here. When people talk about using Rust, it’s not talking about rewriting every single thing ever written in C/C++. It’s about leaving C/C++ behind and moving on to something that doesn’t have the issues of the past. This is not about large scale commercial rewrites. It’s about C’s inability to deal with these problems.

    You are just showing the world you failed to read the article.

    sure thing bud.

    Also, it’s telling that you opt to frame the problem as "a project is written in C instead of <insert pet language> instead of actually secure and harden existing projects.

    I didn’t say that and you know it. Also it’s quite telling (ooh, I can say the same things you can) that you think “better language” means “pet language”. Actually laughable.


  • I can’t speak for C, as I don’t follow it that much, but for C++, this is just not fair. It has been proven repeatedly that it can be done better, and much better. Each iteration has made so many things simpler, more productive, and also safer. Now, there are two problems with what I just said:

    That comment was not talking about programming languages, it was talking about human’s inability to write perfect code. Humans are unable to solve problems correctly 100% of the time. So if the language doesn’t do it for them then it will not happen. See Java for a great example of this. Java has Null Pointer Exceptions absolutely everywhere. So a bunch of different groups created annotations that would give you warnings, and even fail to compile if something was mismatched or a null check was missed. But if you miss a single @NotNull annotation anywhere in the code, then suddenly you can get null errors again. It’s not enforced by the type system and as a result humans can forget. Kotlin came along and ‘solved it’ at the type level, where types are nullable or non-nullable. But, hilariously enough, you can still get NPEs in Kotlin because it’s commonly used to interop with Java.

    My point is that C/C++ can’t solve this at a fundamental level, the same way Kotlin and Java cannot solve this. Programmers are the problem, so you have to have a system that was built from the ground up to solve the problem. That’s what we are getting in modern day languages. You can’t just tack the system on after the fact, unless it completely removes any need for the programmer to do literally anything, because the programmer is the problem.

    Surely not for everything. Of course I see great value if I can stop depending on OpenSSL, and move to a better library written in a better language. Seriously looking forward for the day when I see dynamic libraries written in Rust in my package manager. But I’d like to see what’s the plan for moving a large stack of C and C++ code, like a Linux distribution, to some “better language”. I work everyday on such a stack (e.g. KDE Neon in my case, but applicable to any other typical distro with KDE or GNOME), and deploy to customers on such a stack (on Linux embedded like Yocto). Will the D-Bus daemon be written in Rust? Perhaps. Systemd? Maybe. NetworkManager, Udisks, etc.? Who knows. All the plethora of C and C++ applications that we use everyday? Doubtful.

    I’m not talking about whole scale rewrites. I’m talking about what Linux is already doing with writing new code in Rust, or small portions of performance critical code in a memory safe language. I’m not talking about like what Fish Shell did and rewrote the whole codebase in one go, because that’s not realistic. But slowly converting an entire codebase over? That’s incredibly realistic. I’ve done so with several 250k+ line Java codebases, converting them to Kotlin. When languages are built to be easy to move to (Rust, Kotlin, etc), then migrating to them slowly over time where it matters is easily attainable.


  • Forking is a foolish idea. The core principle of computer-science is that we need to live with legacy, not abandon it.

    what a crazy thing to say. The core principle of computer-science is to continue moving forward with tech, and to leave behind the stuff that doesn’t work. You don’t see people still using fortran by choice, you see them living with it because they’re completely unable to move off of it. If you’re able to abandon bad tech then the proper decision is to do so. OP keeps linking Joel, but Joel doesn’t say to not rewrite stuff, he says to not rewrite stuff for large scale commercial applications that currently work. C clearly isn’t working for a lot of memory safe applications. The logic doesn’t apply there. It also clearly doesn’t apply when you can write stuff in a memory safe language alongside existing C code without rewriting any C code at all.

    And there’s no need. Modern C compilers already have the ability to be memory-safe, we just need to make minor – and compatible – changes to turn it on. Instead of a hard-fork that abandons legacy system, this would be a soft-fork that enables memory-safety for new systems.

    this has nothing to do with the compiler, this has to do with writing ‘better’ code, which has proved impossible over and over again. The problem is the programmers and that’s never going to change. Using a language that doesn’t need this knowledge is the better choice 100% of the time.

    C devs have been claiming ‘the language can do this, we just need to implement it’ for decades now. At this point it’s literally easier to slowly port to a better language than it is to try and ‘fix’ C/C++.





  • It’s also just a huge fallacy. He’s saying that people just choose to not write memory safe code, not that writing memory safe code in C/C++ is almost impossible. Just look at NASA’s manual for writing safe C++ code. It’s insanity. No one except them can write code that’s safe and they’ve stripped out half the language to do so. No matter how hard you try, you’re going to let memory bugs through with C/C++, while Rust and other memory safe languages have all but nullified a lot of that.











  • Because no one ever uses those. Literally > and | are the only ones I’ve ever seen in over a decade and you will never need to worry about the differences between the two.

    XML as a configuration language is terrible. Yaml gets the point across in an easily readable way, which is exactly the point. Same for JSON except JSON you can’t even use comments (you need json5 or one of the numerous other alternatives to get those).