• 0 Posts
  • 15 Comments
Joined 1 year ago
cake
Cake day: June 22nd, 2023

help-circle
  • I don’t know if this is the easiest way, but it has worked well for me. I have a folder on my computer set up to be accessible from the local network. When I need to put some files on the deck, I switch it into desktop mode where I have a shortcut to the network folder. Then I just take the files out and put them wherever I need them on the deck.


  • Whenever I am building larger structures, I find it helpful to design smaller modular pieces that can fit together to make a larger structure. Maybe you can start with the corners to find a good way to outline the building, and then come up with some variations of tiling wall segments that you can repeat 3 or 4 times across the width of the building. Here are some examples of larger builds from my vanilla world that are just a few modular pieces put together into a larger structure:

    Storage building

    A rail bridge

    End portal pyramid

    A city





  • Python

    Part 1: https://github.com/porotoman99/Advent-of-Code-2023/blob/main/Day 7/part1.py

    Code
    import os
    
    filePath = os.path.dirname(os.path.realpath(__file__))
    inputFilePath = filePath + "\\adventofcode.com_2023_day_7_input.txt"
    # inputFilePath = filePath + "\\part1.txt"
    
    def typeSort(hand):
    	cardCount = {
    		"2": 0,
    		"3": 0,
    		"4": 0,
    		"5": 0,
    		"6": 0,
    		"7": 0,
    		"8": 0,
    		"9": 0,
    		"T": 0,
    		"J": 0,
    		"Q": 0,
    		"K": 0,
    		"A": 0
    	}
    	for card in hand:
    		cardCount[card] += 1
    	cardTotals = list(cardCount.values())
    	cardTotals.sort(reverse=True)
    	if(cardTotals[0] == 5):
    		return 6
    	elif(cardTotals[0] == 4):
    		return 5
    	elif(cardTotals[0] == 3 and cardTotals[1] == 2):
    		return 4
    	elif(cardTotals[0] == 3):
    		return 3
    	elif(cardTotals[0] == 2 and cardTotals[1] == 2):
    		return 2
    	elif(cardTotals[0] == 2):
    		return 1
    	else:
    		return 0
    
    def bucketSort(camelCard):
    	totalScore = 0
    	cardOrder = ["2","3","4","5","6","7","8","9","T","J","Q","K","A"]
    	hand = camelCard[0]
    	totalScore += cardOrder.index(hand[4]) * 15 ** 1
    	totalScore += cardOrder.index(hand[3]) * 15 ** 2
    	totalScore += cardOrder.index(hand[2]) * 15 ** 3
    	totalScore += cardOrder.index(hand[1]) * 15 ** 4
    	totalScore += cardOrder.index(hand[0]) * 15 ** 5
    	return totalScore
    
    hands = []
    bids = []
    
    with open(inputFilePath) as inputFile:
    	for line in inputFile:
    		lineSplit = line.split()
    		hand = lineSplit[0]
    		bid = lineSplit[1]
    		hands.append(hand)
    		bids.append(bid)
    
    bids = [int(bid) for bid in bids]
    
    camelCards = list(zip(hands,bids))
    
    typeBuckets = [[],[],[],[],[],[],[]]
    
    for camelCard in camelCards:
    	hand = camelCard[0]
    	typeScore = typeSort(hand)
    	typeBuckets[typeScore].append(camelCard)
    
    finalCardSort = []
    
    for bucket in typeBuckets:
    	if(len(bucket) > 1):
    		bucket.sort(key=bucketSort)
    	for camelCard in bucket:
    		finalCardSort.append(camelCard)
    
    camelScores = []
    
    for camelIndex in range(len(finalCardSort)):
    	scoreMultiplier = camelIndex + 1
    	camelCard = finalCardSort[camelIndex]
    	camelScores.append(camelCard[1] * scoreMultiplier)
    
    print(sum(camelScores))
    

    Part 2: https://github.com/porotoman99/Advent-of-Code-2023/blob/main/Day 7/part2.py

    Code
    import os
    
    filePath = os.path.dirname(os.path.realpath(__file__))
    inputFilePath = filePath + "\\adventofcode.com_2023_day_7_input.txt"
    # inputFilePath = filePath + "\\part1.txt"
    
    def typeSort(hand):
    	cardCount = {
    		"J": 0,
    		"2": 0,
    		"3": 0,
    		"4": 0,
    		"5": 0,
    		"6": 0,
    		"7": 0,
    		"8": 0,
    		"9": 0,
    		"T": 0,
    		"Q": 0,
    		"K": 0,
    		"A": 0
    	}
    	for card in hand:
    		cardCount[card] += 1
    	jokerCount = cardCount["J"]
    	cardCount["J"] = 0
    	cardTotals = list(cardCount.values())
    	cardTotals.sort(reverse=True)
    	if(cardTotals[0] + jokerCount == 5):
    		return 6
    	elif(cardTotals[0] + jokerCount == 4):
    		return 5
    	elif(
    		cardTotals[0] + jokerCount == 3 and cardTotals[1] == 2
    		or cardTotals[0] == 3 and cardTotals[1] + jokerCount == 2
    	):
    		return 4
    	elif(cardTotals[0] + jokerCount == 3):
    		return 3
    	elif(
    		cardTotals[0] + jokerCount == 2 and cardTotals[1] == 2
    		or cardTotals[0] == 2 and cardTotals[1] + jokerCount == 2
    	):
    		return 2
    	elif(cardTotals[0] + jokerCount == 2):
    		return 1
    	else:
    		return 0
    
    def bucketSort(camelCard):
    	totalScore = 0
    	cardOrder = ["J","2","3","4","5","6","7","8","9","T","Q","K","A"]
    	hand = camelCard[0]
    	totalScore += cardOrder.index(hand[4]) * 15 ** 1
    	totalScore += cardOrder.index(hand[3]) * 15 ** 2
    	totalScore += cardOrder.index(hand[2]) * 15 ** 3
    	totalScore += cardOrder.index(hand[1]) * 15 ** 4
    	totalScore += cardOrder.index(hand[0]) * 15 ** 5
    	return totalScore
    
    hands = []
    bids = []
    
    with open(inputFilePath) as inputFile:
    	for line in inputFile:
    		lineSplit = line.split()
    		hand = lineSplit[0]
    		bid = lineSplit[1]
    		hands.append(hand)
    		bids.append(bid)
    
    bids = [int(bid) for bid in bids]
    
    camelCards = list(zip(hands,bids))
    
    typeBuckets = [[],[],[],[],[],[],[]]
    
    for camelCard in camelCards:
    	hand = camelCard[0]
    	typeScore = typeSort(hand)
    	typeBuckets[typeScore].append(camelCard)
    
    finalCardSort = []
    
    for bucket in typeBuckets:
    	if(len(bucket) > 1):
    		bucket.sort(key=bucketSort)
    	for camelCard in bucket:
    		finalCardSort.append(camelCard)
    
    camelScores = []
    
    for camelIndex in range(len(finalCardSort)):
    	scoreMultiplier = camelIndex + 1
    	camelCard = finalCardSort[camelIndex]
    	camelScores.append(camelCard[1] * scoreMultiplier)
    
    print(sum(camelScores))
    

    I tried to do this one as quickly as possible, so the code is more messy than I would prefer, but it works, and I don’t think the solution is too bad overall.

    Edit: I went back and changed it to be a bit better. Here are my new solutions:

    Part 1 v2: https://github.com/porotoman99/Advent-of-Code-2023/blob/main/Day 7/part1v2.py

    Code
    import os
    
    filePath = os.path.dirname(os.path.realpath(__file__))
    inputFilePath = filePath + "\\adventofcode.com_2023_day_7_input.txt"
    # inputFilePath = filePath + "\\part1.txt"
    
    CARD_ORDER = "23456789TJQKA"
    
    def typeSort(camelCard):
    	cardCount = {}
    	for card in CARD_ORDER:
    		cardCount[card] = 0
    	hand = camelCard[0]
    	for card in hand:
    		cardCount[card] += 1
    	cardTotals = list(cardCount.values())
    	cardTotals.sort(reverse=True)
    	if(cardTotals[0] == 5):
    		return 6
    	elif(cardTotals[0] == 4):
    		return 5
    	elif(cardTotals[0] == 3 and cardTotals[1] == 2):
    		return 4
    	elif(cardTotals[0] == 3):
    		return 3
    	elif(cardTotals[0] == 2 and cardTotals[1] == 2):
    		return 2
    	elif(cardTotals[0] == 2):
    		return 1
    	else:
    		return 0
    
    def handSort(camelCard):
    	totalScore = 0
    	hand = camelCard[0]
    	totalScore += CARD_ORDER.index(hand[4]) * 15 ** 1
    	totalScore += CARD_ORDER.index(hand[3]) * 15 ** 2
    	totalScore += CARD_ORDER.index(hand[2]) * 15 ** 3
    	totalScore += CARD_ORDER.index(hand[1]) * 15 ** 4
    	totalScore += CARD_ORDER.index(hand[0]) * 15 ** 5
    	return totalScore
    
    hands = []
    bids = []
    
    with open(inputFilePath) as inputFile:
    	for line in inputFile:
    		lineSplit = line.split()
    		hand = lineSplit[0]
    		bid = lineSplit[1]
    		hands.append(hand)
    		bids.append(int(bid))
    
    camelCards = list(zip(hands,bids))
    camelCards = sorted(camelCards, key=lambda x: (typeSort(x), handSort(x)))
    
    camelScores = []
    
    for camelIndex in range(len(camelCards)):
    	scoreMultiplier = camelIndex + 1
    	camelCard = camelCards[camelIndex]
    	camelScores.append(camelCard[1] * scoreMultiplier)
    
    print(sum(camelScores))
    

    Part 2 v2: https://github.com/porotoman99/Advent-of-Code-2023/blob/main/Day 7/part2v2.py

    Code
    import os
    
    filePath = os.path.dirname(os.path.realpath(__file__))
    inputFilePath = filePath + "\\adventofcode.com_2023_day_7_input.txt"
    # inputFilePath = filePath + "\\part1.txt"
    
    CARD_ORDER = "J23456789TQKA"
    
    def typeSort(camelCard):
    	cardCount = {}
    	for card in CARD_ORDER:
    		cardCount[card] = 0
    	hand = camelCard[0]
    	for card in hand:
    		cardCount[card] += 1
    	jokerCount = cardCount["J"]
    	cardCount["J"] = 0
    	cardTotals = list(cardCount.values())
    	cardTotals.sort(reverse=True)
    	if(cardTotals[0] + jokerCount == 5):
    		return 6
    	elif(cardTotals[0] + jokerCount == 4):
    		return 5
    	elif(
    		cardTotals[0] + jokerCount == 3 and cardTotals[1] == 2
    		or cardTotals[0] == 3 and cardTotals[1] + jokerCount == 2
    	):
    		return 4
    	elif(cardTotals[0] + jokerCount == 3):
    		return 3
    	elif(
    		cardTotals[0] + jokerCount == 2 and cardTotals[1] == 2
    		or cardTotals[0] == 2 and cardTotals[1] + jokerCount == 2
    	):
    		return 2
    	elif(cardTotals[0] + jokerCount == 2):
    		return 1
    	else:
    		return 0
    
    def handSort(camelCard):
    	totalScore = 0
    	hand = camelCard[0]
    	totalScore += CARD_ORDER.index(hand[4]) * 15 ** 1
    	totalScore += CARD_ORDER.index(hand[3]) * 15 ** 2
    	totalScore += CARD_ORDER.index(hand[2]) * 15 ** 3
    	totalScore += CARD_ORDER.index(hand[1]) * 15 ** 4
    	totalScore += CARD_ORDER.index(hand[0]) * 15 ** 5
    	return totalScore
    
    hands = []
    bids = []
    
    with open(inputFilePath) as inputFile:
    	for line in inputFile:
    		lineSplit = line.split()
    		hand = lineSplit[0]
    		bid = lineSplit[1]
    		hands.append(hand)
    		bids.append(int(bid))
    
    camelCards = list(zip(hands,bids))
    camelCards = sorted(camelCards, key=lambda x: (typeSort(x), handSort(x)))
    
    camelScores = []
    
    for camelIndex in range(len(camelCards)):
    	scoreMultiplier = camelIndex + 1
    	camelCard = camelCards[camelIndex]
    	camelScores.append(camelCard[1] * scoreMultiplier)
    
    print(sum(camelScores))
    


  • As far as I’m aware, the inclusion of real-world animal species in the older anime and games was due to the lack of variety in existing Pokemon species. The last time I know they referred to a real animal was in 2016, where the Pokedex entry for Raichu says it can knock out an Indian elephant. More recently, Raichu’s Pokedex entry was updated to instead say it can incapacitate a Copperajah.




  • I’ve made a bunch of these using different berries since this was posted. The classic blueberry variety is good, and cherries are just as good, if not better. Cranberries are pretty good, but are very tart, so you can’t eat as much in one serving. Blackberries tasted good, but were very seedy, so it wasn’t as good texture-wise. Figs were terrible and I had to throw the whole batch away after 1 bite. Overall, a fun and easy recipe to try, and I’m planning on making more in the future.


  • There are some tricks you can do to make this one a bit easier. I played on a set seed, first planning a base for it in editor mode, and then copying the entire base as a blueprint. You have to play with biters, but you can set their spawning area to be far enough away that you won’t need to interact with them. I also made a new save file for each major milestone in the base, so if I didn’t reach the end quick enough, I could try to go back to a previous segment that I thought was slow and do it faster.



  • “Worthy” from Distance.

    It is still my rarest achievement, with only 0.60% of players having earned it. A lot of the achievements in my rarest achievement showcase were added to popular games years after the peak of the game’s popularity, but were actually quite easy to get. “Worthy” required beating a large level with various unique challenges, and even with checkpoints present in the game, it would often take me hours to reach the next checkpoint at certain parts. I had to follow along with this video at some parts to make sure I was getting through the level correctly, especially the segment from 5:40 to 7:57 which took me about 4 hours to get through successfully.